HIGHLIGHTS FROM OUR BUSINESS DIVISIONS

Mechanical and Automotive Engineering

Electronics and

The "Materials and Processes" business division provides a central point of contact for all matters related to development, manufacturing, and qualification of high-performance ceramics for a wide range of applications. A wealth of experience has been accumulated in all relevant materials and technologies, for which requirement-related functional solutions are developed. The scope of activities encompasses the entire process chain, making this division crucial to all other business divisions.

High-performance ceramics are key components in mechanical and automotive engineering. Due to their outstanding properties, they are often the only available options. The "Mechanical and Automotive Engineering" business division offers high-performance ceramic, hard metal, and cermet wear parts and tools as well as parts for specific loading conditions. A new core area comprising test systems for monitoring components and production facilities based on optical, elastodynamic, and magnetic effects has also been established.

The "Electronics and Microsystems" business division offers manufacturers and users unique access to materials, technologies, and know-how to help them develop robust, high-performance electronic components. Focus is on sensors and sensor systems as well as power electronic components and "smart" multifunctional systems. With the help of innovative test methods and systems, Fraunhofer IKTS provides support along the entire value-added chain - from materials to integration of complex electronic systems.

Ceramic materials and technologies form the basis for improved and fundamentally new applications in energy technology. To that end, Fraunhofer IKTS develops, builds, and tests innovative components, modules, and complete systems, focusing mainly on ceramic solid-state ionic conductors. Applications range from electrochemical energy storage systems and fuel cells, solar cells, energy harvesting modules, and thermal energy systems to solutions for biofuels and chemical fuels.

Environmental and Process Engineering Bio- and Medical Technology Optics Materials and Process Analysis Image: Stream of the stre

Fraunhofer IKTS develops innovative materials, technologies, and systems for safe, efficient, environmentally, and climate-friendly conversion of energy and substances. Focus is on processes involving conventional and biological energy sources as well as strategies and processes for water and air purification and treatment, and for recovery of valuable raw materials from waste. New reactor designs for the chemical industry are made possible by ceramic membranes and catalysts.

Fraunhofer IKTS makes use of the outstanding properties of ceramic materials to develop dental and endoprosthetic implants and surgical instruments. In well-equipped, certified laboratories, the interactions between biological and synthetic materials are investigated and applied towards the development of improved materials, analytics, and diagnostics. In part unique optical, acoustic, and bioelectrical techniques are available for this purpose.

Fraunhofer IKTS develops ceramic materials and components for photonics, lighting applications, and ballistic protection. Phase synthesis combined with materials and technology expertise yields innovative luminescent materials, active optoceramics, optical and decorative elements, and transparent ceramics for defense applications. Optical technologies are also used in measurement and diagnostic systems in medicine, life sciences, and industry.

Fraunhofer IKTS offers a wide range of test, characterization, and analysis methods for materials properties and production processes. As a reliable, multiply accredited, and audited service provider, Fraunhofer IKTS assists in the investigation of fundamental aspects of materials science, application-specific issues, and measurement-related developments. Characteristic parameters are not only determined but also interpreted within the context of the respective application to uncover any potential for optimization.